657 research outputs found

    Influences of degree inhomogeneity on average path length and random walks in disassortative scale-free networks

    Full text link
    Various real-life networks exhibit degree correlations and heterogeneous structure, with the latter being characterized by power-law degree distribution P(k)kγP(k)\sim k^{-\gamma}, where the degree exponent γ\gamma describes the extent of heterogeneity. In this paper, we study analytically the average path length (APL) of and random walks (RWs) on a family of deterministic networks, recursive scale-free trees (RSFTs), with negative degree correlations and various γ(2,1+ln3ln2]\gamma \in (2,1+\frac{\ln 3}{\ln 2}], with an aim to explore the impacts of structure heterogeneity on APL and RWs. We show that the degree exponent γ\gamma has no effect on APL dd of RSFTs: In the full range of γ\gamma, dd behaves as a logarithmic scaling with the number of network nodes NN (i.e. dlnNd \sim \ln N), which is in sharp contrast to the well-known double logarithmic scaling (dlnlnNd \sim \ln \ln N) previously obtained for uncorrelated scale-free networks with 2γ<32 \leq \gamma <3. In addition, we present that some scaling efficiency exponents of random walks are reliant on degree exponent γ\gamma.Comment: The definitive verion published in Journal of Mathematical Physic
    corecore